Serolojik numunelerde alt üst tutarlılık elde etmek için özel olarak tasarlanmıştır ve sonuçta planlanan testin hassasiyetinin arttırılmasına yardımcı olur. MKR-20 ve MKR-30 döner yatağıyla kan örneği tüpleri, falcon tüpler, kültür şişesi vb. içindeki tüm boyutlardaki örnekleri karıştırmak için tasarlanmıştır.
MKR-20 MODEL
MKR-20 MODEL ÖZELLİKLERİ :
Optimum ve Homojen karıştırma özellliği için yavaş döngüsel çevirme MKR-20 K3 edtalı tüp kapasiteli
Kan örneği ve viskoz maddeyi karıştırmak için uygundur.
Sessiz çalışma ve bakım gerektirmeyen uzun ömür için fırçasız DC motor
Uygun temizlik için çıkarılabilir silindirler
Farklı çaplı tüpleri tutmak için ayarlanabilir makaralı çubuk aralığı
Cihaz fırınlama boya tekniği kullanılmıştır.
20 Adet K3 EDTA’lı vakumsuz / vakumsuz hemogram tüpü
AC Motor
4W
Sabit Hız (10-15-20-25-30 rpm )
Saat yönünde dönme
220VAC 50Hz
2 yıl garanatilidir.
MKR-30 MODEL
MKR-30 MODEL ÖZELLİKLER :
Optimum ve Homojen karıştırma özellliği için yavaş döngüsel çevirme MKR-30 K3 edtalı tüp kapasiteli
Kan örneği ve viskoz maddeyi karıştırmak için uygundur.
Sessiz çalışma ve bakım gerektirmeyen uzun ömür için fırçasız DC motor
Uygun temizlik için çıkarılabilir silindirler
Farklı çaplı tüpleri tutmak için ayarlanabilir makaralı çubuk aralığı
1 dakikadan 99 dakikaya kadar ayarlanabilir zamanlayıcı ve sonsuz darbe modu
Cihaz fırınlama boya tekniği kullanılmıştır.
30 Adet K3 EDTA’lı vakumsuz / vakumsuz hemogram tüpü
Helicobacter pylori midenizde helicobacter pylori bakterisinin neden olduğu bir enfeksiyon olup olmadığını belirlemek için kullanılabilecek basit bir nefes testidir. Yani testi mideyi enfekte edebilen ve hem mide hem de duodenumdaki (ince bağırsağın ilk kısmı) ülserlerin ana nedeni olan bir bakteri türü olan Helicobacter pylori’yi (H. pylori) tespit etmek için kullanmaktadır. Test plastik bir pipet kullanarak ağzımız ve nefesimizle tüpü üfleyerek gereçleştirlilir. Test yaklaşık 10 dakika sürmektedir. Bu test tamamen güvenli ve ağrısızdır.
Nefes testinin amacı nedir?
H. Pylori (Helicobacter Pylori) Nefes Testi / Üre H. pylori nefes testi, balon benzeri bir torbaya veya pipet şeklinde bir aparata nefes alma verme işlemi yaparak başlatılır. H. pylori bakterisini tespit etmenin, H. pylori enfeksiyonunu teşhis etmenin ve tedavinin enfeksiyonu iyileştirip iyileştirmediğini belirlemenin güvenli ve kolay bir yoludur.
Dikkate edilecek hususlar;
İşlemden önce 6 saat boyunca herhangi bir şey yemeyin ve içmeyin (su dahil).
Testten önce 4 hafta boyunca herhangi bir antibiyotik almayın.
İşlem öncesinde sadece doktorunuzun onayladığı ilaçları kullanın.
Neden üre nefes testi yaptırmam gerekiyor? ( UBT’nin Avantajları)
Bu teste isteminin yapılması ve olası nedenleri şunlardır:
Doktorunuz, durumunuzun teşhisine yardımcı olmak için helicobacter pylori enfeksiyonundan muzdarip olup olmadığınızı doğrulamak için isteyebilir.
Halihazırda helicobacter pylori enfeksiyonu tanısı almış olabilirsiniz ve enfeksiyonu temizlemek için ilaç alıyor olabilirsiniz. Doktorunuz tedavinin başarılı olup olmadığını öğrenmek isteyebilir.
Hazımsızlık yakınmaları olan hastalarda H. pylori pozitifliğinin araştırılması…
UBT’nin aile hekimliğinde tarama testi olarak kullanılabilirliği incelenmesi…
Endoskopik değerlendirmeye göre noninvaziv, daha güvenli ve uygun maliyetli olması…
H. pylori dağılımının düzensiz olduğu hastalarda EGD değerlendirmesi negatif olabilirliği…
Daha düşük maliyetli olması, kullanımı kolay ve hızlı teşhis süresinin olması…
H. pylori için nefes testi ile yapılan ölçümlerde test %95’ten oranında yüksek doğruluğun olması…
Test pozitif ise H. pylori mevcut olması ….. Negatifse H. pylori olmaması…
Hastaya herhangi bir cerrahi müdale gerektirmeden (Anestezi vs.) hızlı teşhisin konulmasında yardımcı olması…
H. pylori için endoskopi en iyi test midir?
Genel olarak H. pylori enfeksiyonunun tanısı invaziv (endoskopi ve biyopsi) ve invaziv olmayan tekniklerle (örn. seroloji, üre nefes testi, dışkı testi) konulabilir. Dispepsi, alarm semptomları veya tümör öyküsü olan hastalarda, altta yatan hastalığın aydınlatılması için derhal endoskopi yapılması önerilmektedir.
Hayvan biyokimyası hayvanların vücudundaki farklı kimyasal reaksiyonları inceler. Bu, veterinerlik bilimi ve hayvancılığın çeşitli yönlerini anlamak açısından son derece önemlidir. Metabolizmanın daha iyi anlaşılmasını ve hayvanlarda sağlık ve hastalıkta sürecin işlevinin anlaşılmasını içerir.
Veteriner biyobilimleri, hayvanlarda sağlık ve hastalık biyolojisine odaklanan, tüm modern biyolojik bilimlerin temelini oluşturan temel unsurların güçlü bir şekilde anlaşılmasını sağlamak için tasarlanmış bir biyolojik bilimler programıdır.
Doğru referans laboratuvar kalitesi sonuçları üreten, hayvan sağlığı teşhisine yönelik tamamen yeni bir koagülasyon (pıhtılaşma) ve Biyokimya analizörüdür. Hayvan sağlığı teşhisine yönelik tamamen yeni birkoagülasyon (pıhtılaşma) ve Biyokimya olan bu cihaz, doğru ve yüksek kaliteli sonuçlar sağlayacak bir dizi özellik sunar.
Geniş hayvan yelpazesi:
Cihaz, köpekler, kediler, atlar, sığırlar ve diğer hayvanlar dahildir. Ancak bunlarla sınırlı olmamak üzere çeşitli hayvan türlerinin numunelerini analiz etmek için son derece kolay ve en sistemdir. Hayvan sağlığı teşhisine yönelik gelişmiş koagülasyon (pıhtılaşma) ve Biyokimya veterinerlik uygulamalarında ve araştırma ortamlarında kan örneklerinin analizinin doğruluğunu, verimliliğini ve güvenilirliğini önemli ölçüde artırır.
Avantajları
Koagülasyon (pıhtılaşma) ve Biyokimya testi 2’si 1 arada…
Çeşitli pıhtılaşma ve biyokimya ihtiyaçlarını karşılayan çok çeşitli testler mevcuttur…
Ayrı koagülasyon ve biyokimya analizörlerine olan ihtiyacı azaltan uygun maliyetli çözüm….
Çift tepsi tasarımı, tam kan örneklemesi…
Optimum performans için otomatik kalibrasyon ve kalite kontrol özellikleri…
Hızlı ve etkili test süreci, sağlık profesyonellerine zaman kazandırıyor…
Liyofilize reaktif diski, uzun süreli saklama…
Reaktiflerin verimli kullanımı, israfın en aza indirilmesi ve genel test maliyetlerinin azaltılması
Kompakt, Mobil ve taşınabilir…
Yalnızca 3 kg ağırlığında olan analizör, taşınabilir olacak ve az yer kaplayacak şekilde tasarlanmış olup her zaman her yerde kullanılabilmesini sağlar…
Biyokimya Koagülasyon (pıhtılaşma) Cihazında yapılan testler nelerdir?
Koagülasyon 4 Testleri: PT, TT, APTT, FIB, *INR
Koagülasyon 2 Testleri: PT, APTT
Sağlık Kontrolü 16 Testleri: TP, ALB, *GLOB, TB, ALT, ALP, CK, AMY, Crea, UREA, TCHOL, GLU, Ca, PHOS, *A/G, *UREA/CRE
A-) Cihaz Analizleri Tam Otomatik ve Kompakt, Esnek ve Düşük Maliyetli Olmalıdır. 31 parametreyi ve 3 renkli histogramı ekranda vermelidir.
B-) Sistem, Full Otomatik yeni nesil lazerli ve 31 parametre Veteriner Kan Sayım Cihazı WBC’nin 5 parçalı formül diferansiyeli okuyabilmelidir.
C-) Sistem kan hücrelerini elektriksel empedans yöntemle ve hemoglobini siyanür içermeyen prensiple ve tam otomatik olarak okuyabilmelidir.
Cihaz, WBC, Sayısal parametreleri : Neu#, Lym#, Mon#, Eos#, Bas#, şeklinde olmalıdır.
Cihaz, WBC, Yüzdelik parametreleri: Neu%, Lym%, Mon%, Eos%, Bas% şeklinde olmalıdır.
Cihaz, WBC, RBC, HGB, HCT, MCV, MCH, MCHC, RDW-SD, RDW-CV, PLT, MPV, PDW, PCT, otomatik olarak okuyabilmelidir.
WBC :Beyaz küre sayısı,
RBC :Kırmızı küre sayısı,
HB :Hemoglobin,
HCT :Hematokrit,
MCV :Ortalama kırmızı küre hacmi,
MCH :Kırmızı küredeki ortalama hemoglobin,
MCHC :Birim hacim kırmızı küredeki hemoglobin,
PLT :Trombosit sayısı,
MPV :Ortalama trombosit hacmi,
PCT :Plateletkrit,
Neu% : Nötrofil yüzdesi,
Lym% :Lenfosit yüzdesi,
Mon% :Monosit yüzdesi,
Bas% :Bazofil yüzdesi,
Eos% :Eozinofil yüzdesi,
Neu# :Nötrofil sayısı
Lym# :Lenfosit sayısı,
Mon# :Monosit sayısı,
Bas# :Bazofil sayısı,
Eos# :Eozinofil sayısı
RDW :Kırmızı küre dağılım genişliği,
PDW :Trombosit dağılım genişliği,
RDW-SD : Eritrositlerdeki hacim büyüklüğü
RDW-CV : Eritrositlerin histogram genişliği
A-) Cihaz RBC , WBC , PLT dağılım grafiklerini hem ekrandan hem de printerdan vermelidir.
B-) Cihaz HASTA GİRİŞ MENÜSÜNDE, Kurum adı, Branş adı, Testi yapan kullanıcı adı, Testi Talep Eden Hekim adı, Hasta adı, yatak numarası, yaşı, cinsiyet bilgileri girilmelidir.
C-) Cihaz anormal durumlarda kullanıcıyı sesli veya görsel uyarmalı, sesli uyarıyı tek tuşla sessize almalıdır.
D-) Cihaz yeni nesil olmalı, ana ekrandan ve 3 adımda her menüye ulaşır olmalıdır.
E-) Cihaz kullanıcı hatalarına karşı homojen olmayan kan veya pıhtılı kan verilmesi durumunda, ana ekranda pıhtı yakma menüsüne sahip olmalı, böylece kullanıcı tek tuşla tıkanıklığı giderebilmelidir.
F-) Cihaz HİSTOGRAM(Grafiklerin)okumalarında yardımcı olmalı ve ALARM UYARI sistemine sahip
olmalıdır.
a-) “R1”: Sol tarafta lenfosit eğrinin anormallik göstermesi, Trombositlerin pıhtılaşması, büyük
trombosit ve eritrositlerin çözümlenmemiş kırmızı hücreler, anormal lenfosit, protein ikiye ayrıldığını ekranda vermelidir.
b-) “R2”: Lenfosit ve orta büyüklükteki hücrelerin arasındaki anormal değerleri belirtmek için. Patolojik
lenfosit, anormal lenfosit, plazma hücresi, eozinofil veya bazofil sayısının artığında belirtmelidir.
c-) “R3”: Orta büyüklükteki hücreler ile granülosit arasındaki olgunlaşmamış granülositleri, örnekte anormal alt popülasyonu veya eozinofil sayısındaki artışlar belirtmelidir.
e-) “RM”: İkiden fazla bölgenin anormal olduğunu sunmaktadır.
f-) Cihazda verim ve parametre tekrarlanabilirlik (% CV) aşağıdaki gibi olmalıdır.
WBC ≤ 2.0 %
RBC ≤ 1.5 %
HGB ≤ 5 %
MCV ≤ 4.0 %
PLT ≤ 0 %
g-) Doğrusal aralıklar aşağıdaki gibi olmalıdır.
WBC : 4-15 x 10,0 × 109/ L
RBC : 3.5 -6.0 x 1012 / L
HGB : 110-180 g/L
MCV : 70-120 fL
PLT : 100-500 × 109/ L
Cihazda toplam 31 mutlak test parametresine sahip olmalıdır.
Cihazda toplam 23 sayısal mutlak değer parametreye sahip olmalıdır.
Cihaz 4 adet dağılım diagrama sahip olmalıdır.
Cihaz 3 adet histogram grafiğine sahip olmalıdır.
Cihazda bilimsel araştırmalar için, ayrıca 8 adet parametreye sahip olmalıdır.
Cihaz yeni nesil yüksek mikro-analiz duyarlılığına sahip olmalıdır.
Sistem açılışlarda kullanıcı tanımlama ve şifre ile kontrol edilebilmelidir.
Cihaz reaktiflerin konsatrasyon ve ısı kontrolü yapabilmeli, ve reaktiflere ait ilk kullanın ve son kullanma tarihini sistem üzerinde barkodlu izlenmelidir.
Cihaz atık ve reaktiflerin seviye kontrolünü özel sensörlerle izlemelidir.
RBC ve PLT verilerini belirlemek için Elektriksel Empedans yöntemi ile okumalıdır.
HGB’yi belirlemek için kolorimetrik yöntem ile okumalıdır.
WBC verilerini belirlemek için LAZER tabanlı akış SİTOMETRİ TEKNİĞİ olmalıdır.
Cihazda 23 parametre + 4 dağılım diyagramı 3 histogram 8 Bilimsel Araştırma Parametresi (WBC / RBC / PLT) fonksiyonuna sahip olmalıdır.
Cihaz çok ağır veya vakalı anemi hastalarına karşın, 2 damla kanla KAPİLLER veya DİLUSYON yöntemle çalışabilmelidir.
Cihaz, 3 adet farklı modla çalışmalı VENÖZ, KAPİLLER ve DİLUSYON örnekleme yöntemleriyle çalışma yapmalıdır.
Cihaz tüm sonuçların izlenebileceği RENKLİ 10.4″ LCD DOKUNMATİK ekrana sahip olmalıdır.
Sistem dış etkenlere karşı güvenli kapalı vidasız kasa üzerinde anahtar sistemine sahip olmalıdır.
Cihaz, Venöz 11 μL,Kapiller 9.6μL, Prediluted 20 μL olmalıdır.
Çalışma Modu, çift geçiş sayma tespiti fonksiyonuna sahip olmalıdır.
Cihaz Arayüz sowftware LİNUX işletim sistemi altında çalışmalıdır.
Cihaz barkodlu Test okuma sistemine sahip olmalıdır.
Cihaz dokunmatik ekranı olmalı, hızlı ve pratik kullanıma sahip olmalıdır.
Cihaz ÇOKLU DİL sistemi ile birlikte,TÜRKÇE DİL ARA YÜZÜNE sahip olmalıdır.
Cihazın kendisine ait özel programı ile mevcut NETWORK LİS ARAYÜZÜ ile bilgisayara bağlanabilmelidir.
Cihazda Operasyon modu: Dokunmatik ekranda KLAVYE işlemi dışında, ayrıca USB bağlantısı ile klavye ve Mouse bilgi girişine sahip olmalıdır.
Cihazda Çalışma hızı 60 örnek / saat, otomatik ile 24 saat çalışabilmelidir.
Cihazda Depolama Histogramlar dahil 50.000 örnek sonuç fonksiyonuna sahip olmalıdır.
Cihazda Tür Uygulama ;Kadın, Erkek, Çocuk, Yeni Doğan ve özel kullanıcı tanımlı 10 farklı hayvan türleri ekleme özelliğine sahip olmalıdır.
Cihazda Kalite kontrol: LJ; XB özelliğine sahip olmalıdır.
Cihazda Kalibrasyon modu: Manuel kalibrasyon ve Otomatik kalibrasyon
Cihaz Ağırlık : 26,5 kg olmalıdır.
Cihaz Boyut :364 × 498 × 431 (mm) olmalıdır.
Çalışma ortamı Sıcaklığı : 10-30 ℃, Nem% 70 olmalıdır.
Cihazda Test modu: CBC, CBC+ DIFF olmalıdır.
Cihazda 1 X 4 adet USB, 1 adet, 1 adet Ethernet LAN ara birimlerine sahip olmalıdır.
Cihazın numune probun iç ve dış temizliğini otomatik olarak yapmalıdır.
Cihaz arıza durumlarında ve anormal numunelerde uyarı mesajlar vererek kullanıcıyı uyarmalıdır.
Cihaz hasta rapor formunda, sonuçları ile birlikte normal değer aralığı izlenebilmelidir
Cihazın hafızasında bulunan hasta sonuçlarını ekranda izlenebilmeli, Ayrıca, RS 232 ile aktarılabilmeli veya cihaz üzerinde dahili yazıcıdan da yazdırılabilmelidir.
Cihaz kötü şehir şebeke gerilimine ve değerlerin doğru okumasına karşın, TOPRAKLAMA REFERENS DESTEĞİNE sahip olmalı
Cihaz 220/380 Volt ve 50/60 Hz şehir şebeke elektriğine uygun olacak şekilde çalışmalıdır.
Cihaz Teknik servis TSE, FDA, CE ve ISO kalite yeterlik belgelerine sahip olmalıdır.
Üre nefes testi, gastrit, mide ülseri ve peptik ülser hastalığında rol oynayan sarmal bir bakteri olan Helicobacter pylori’nin neden olduğu enfeksiyonları tanımlamak için kullanılan hızlı bir teşhis prosedürüdür. Test aynı zamanda H. pylori’nin antibiyotik tedavisiyle ortadan kaldırıldığını göstermek için de kullanılabilir.
Ağızdan nefes verdiğinizde, midenizde bakteri olup olmadığını görmek için radyoaktif karbondioksit miktarı ölçülebilir . Bu ajan radyoaktif bir ajandır. Ancak test için kullanılan kapsülün içindeki küçük miktarlar nedeniyle vücudunuzun aldığı radyasyon çok düşük ve güvenli kabul ediliyor. Sistemlerimiz radyoaktif madde bulunmamaktadır. Üre nefes cihazlarımız mobil olup, istedğiniz yere götürebilir ve testlerinizi gereçkleştirebilirsiniz. Mobil/ portabl olmasından dolayı çok tercih edilmektedir. Böylece, Çocuk, Gebe, yaşlı ve yatan hastalarda kolaylıkla uygulabilmektedir.
GİRİŞ
Firmamız siz değerli müşterilerimize çok önemli bilgi ve bilimsel araştırmalar yaparak gerek akademik ve gerekse gelişen teknolojiyi bütünleştirmek adına sizlere yardımcı olmaya çalışıyoruz.
Helicobacter pylori ( H. pylori ), insan midesini enfekte eden ve kronik gastrit, peptik ülser, mide adenokarsinomu, mukoza ile ilişkili lenfoid doku lenfoması ve diğer sindirim hastalıkları dahil olmak üzere çeşitli hastalıklarla yakından ilişkili olan Gram-negatif bir bakteridir. kan sistemi, sinir sistemi, kardiyovasküler sistem , cilt ve oftalmolojinin sindirim dışı hastalıklarının yanı sıra[ 1,2 ]. Uluslararası Kanser Araştırma Ajansı, H. pylori’yi grup 1 kanserojen olarak sınıflandırmıştır . 410879 katılımcıyı bir araya toplayan yeni bir sistematik inceleme ve meta-analiz, dünya çapında H. pylori enfeksiyonunun genel prevalansının %44,3 olduğunu gösterdi (%95 güven aralığı (CI): 40,9-47,7); 3 ]. Bu nedenle H. pylori enfeksiyonunun doğru tanısı, ilgili hastalıkların önlenmesi ve tedavisi açısından son derece önemlidir. Günümüzde H. pylori enfeksiyonlarını tespit etmek için çeşitli tanı yöntemleri mevcuttur (invaziv olmayan ve invazif yöntemler)[ 4 ] ancak H. pylori enfeksiyon durumunu belirlemek için endoskopik değerlendirme , erken gastrik enfeksiyonun taranmasına yardımcı olabilecek yeri doldurulamaz bir yöntemdir. Yapay zeka (AI), insan zekasını simüle etmek, genişletmek ve genişletmek için kullanılan teori, yöntem, teknoloji ve uygulama sistemini inceleyen ve geliştiren bir teknoloji bilimidir. Derin öğrenmenin (DL) ortaya çıkması ve gelişmesiyle birlikte, yapay zekanın tıpta uygulanması da heyecanla araştırıldı ve kapsamlı bir şekilde araştırıldı[ 5 – 8 ]. Gastroenteroloji, radyoloji, nöroloji, ortopedi, patoloji ve oftalmoloji dahil olmak üzere farklı tıbbi alanlardaki görüntüleri tanımlamak veya ayırt etmek için yapay zeka teknolojisini kullanan çok sayıda araştırma çalışması yayınlanmıştır[ 9 ].
Bu derlemede, H. pylori enfeksiyonunun endoskopik tanısı alanında AI’nın uygulanmasına odaklanıyoruz ve gelecekteki beklentileri tartışıyoruz.
H. PYLORİ ENFEKSİYONUNUN ENDOSKOPİK TEŞHİSİNİN ÖNEMİ:
Mide kanseri olan hastaların çoğunda H. pylori enfeksiyonu vardır veya geçirilmiştir [ 10 , 11 ]. Çok sayıda çalışma H. pylori’nin yok edilmesinin mide kanseri riskini etkili bir şekilde azaltabileceğini göstermiştir[ 12-14 ] . Bununla birlikte, Mabe ve arkadaşları tarafından yürütülen çalışma [ 15 ], H. pylori’nin yok edilmesinden sonra insanların mide kanserine yakalanma riskinin , H. pylori ile enfekte olmayan kişilere göre hala daha yüksek olduğunu göstermiştir . Bu nedenle, H. pylori’nin yok edilmesinden sonra bile düzenli endoskopik ve histolojik gözetim şiddetle tavsiye edilir[ 16,17 ] . Sonuç olarak, H. pylori enfeksiyon durumunun (enfeksiyon olmaması, geçmiş enfeksiyon ve mevcut enfeksiyon) endoskopik değerlendirmesi giderek daha önemli hale gelmiştir.
H. pylori enfeksiyonunun durumunu değerlendirmek ve mide kanseri riskini daha doğru bir şekilde değerlendirmek için kullanılan, gastritin Kyoto sınıflandırması önerildi [ 18 ]. Endoskopi altında mide mukozasının özelliklerine göre mide mukozası şu üç duruma ayrılabilir:
H. pylori -enfekte olmamış mide mukozası, H. pylori -enfekte mide mukozası ve H. pylori -geçmişte enfekte olmuş mide mukozası[ 18 , 19 ]. Kyoto sınıflandırma skorunun, beş endoskopik özelliğe (atrofi, bağırsak metaplazisi, genişlemiş kıvrımlar, nodülarite ve toplayıcı venüllerin düzenli düzenlenmesi ile birlikte veya düzenli olmayan yaygın kızarıklık) ait skorların toplamı olduğu ve 0 ile 8 arasında değiştiği dikkate alınmalıdır. sistem, H. pylori enfeksiyonunu değerlendirme ve mide kanseri riskini tahmin etme konusunda mükemmel bir yetenek sergilemiştir[ 20 ]
. Bununla birlikte, yukarıdaki endoskopik özelliklerin objektif göstergeleri yoktur ve H. pylori ile enfekte mukozanın optik tanısında gözlemciler arası veya gözlemciler arası değişkenlik potansiyeli vardır[ 21 ]. Başka bir deyişle, H. pylori enfeksiyonunun endoskopik tanısı için endoskopistler arasındaki tanısal tutarlılık ideal değildir. Ayrıca, profesyonel endoskopistler , endoskopik muayene sırasında mukozanın dikkatli görsel muayenesi ile H. pylori enfeksiyonunu belirleyebilirler , ancak acemilerin bu görevi etkili bir şekilde yerine getirebilmeleri için çok fazla zamana ihtiyaçları vardır.
Endoskopik gözetimin önemi, H. pylori’nin enfekte olup olmadığının veya geçirilmiş olup olmadığının belirlenmesiyle sınırlı değildir; midenin genel bir değerlendirmesini de yapabilir. Her şeyden önce, klasik Kimura-Takemoto sınıflandırması, endoskopik atrofik sınırı gözlemleyerek endoskopistlerin midenin atrofik modelini sınıflandırmasına yardımcı olmak için günümüzde hala yaygın olarak kullanılmaktadır[ 22 ]. İkincisi, çoğu mide kanseri H. pylori ile ilişkili gastritten gelişir. Bu , kanser öncesi lezyonların (özellikle atrofik gastrit, bağırsak metaplazisi ve displazi/intraepitelyal neoplazi) çok adımlı bir yolu aracılığıyla meydana gelebilir [ 16 ].
Atrofi ve bağırsak metaplazisinin ciddiyeti ve kapsamına göre mide kanseri riskinin değerlendirmesini yapmak için OLGA ve OLGIM gibi histolojik evreleme sistemlerini kullanabiliriz[ 23-25 ]. Son olarak, bir tespit yöntemi H. pylori negatifliğini gösterdiğinde , ancak endoskopi altında H. pylori enfeksiyonunun tipik belirtileri mevcutsa , bu durumda tanının atlanmasını önlemek amacıyla doğrulama için başka bir farklı yöntem seçilmelidir.
AI NEDİR?
Doktorlar ve endoskopistlerin yapay zeka, makine öğrenimi (ML) ve DL’nin kesin kavramları konusunda kafaları karışabilir. Yapay zeka, birçok dalı olan bir makro kavramdır ( örneğin , Planlama ve Çizelgeleme, Uzman Sistemler, Çoklu Ajan Sistemleri ve Evrimsel Hesaplama). Genel olarak yapay zekaya yönelik üç yaklaşım vardır: Sembolizm (IBM Watson gibi kural tabanlı), bağlantıcılık (DL gibi ağ ve bağlantı tabanlı) ve Bayesian (Bayes teoremine dayalı)[ 26 ]. Yapay zekada bilgisayarlar insanları taklit edebilir ve insanlarınkine benzer zeka sergileyebilir.
ML, yapay zekayı gerçekleştirmeye yönelik bir yöntem olan yapay zekanın bir alt kümesidir. ML, verilerdeki kalıpları otomatik olarak algılayan ve daha sonra gelecekteki verileri tahmin etmek veya belirsiz koşullar altında karar almayı mümkün kılmak için ortaya çıkarılan kalıpları kullanan bir dizi yöntem olarak tanımlanır[ 27 ]. ML yaklaşık olarak denetimli ve denetimsiz yöntemlere ayrılır.
Denetimsiz öğrenme, amaç, grup sayısı veya önemleri hakkında önceden bilgi olmadan, veriler içindeki grupları ortak noktalara göre tanımlamak olduğunda ortaya çıkar. Denetimli öğrenme, eğitim verilerinin girdi-çıktı çiftleri olarak temsil edilen bireyleri içermesi durumunda gerçekleşir. Girdi, bireysel tanımlayıcılardan oluşurken çıktı, tahmin edilmesi gereken ilgi çekici sonuçları (ya sınıflandırma görevleri için bir sınıf ya da regresyon görevleri için sayısal bir değer) içerir. Daha sonra, denetlenen makine öğrenimi algoritması, daha sonra yeni girdilerin çıktılarla eşleştirilmesine izin veren tahmine dayalı modelleri öğrenir[ 28 ]. ML’nin en temel uygulaması [ örneğin , destek vektör makinesi (SVM), rastgele orman ve Gauss karışım modelleri], onlardan öğrenmek amacıyla verileri ayrıştırmak için algoritmalar kullanmak ve ardından gerçek dünyadaki olaylar hakkında kararlar ve tahminler yapmaktır..
Günümüzün makine öğrenimi, bilgisayarla görme ve diğer alanlarda büyük başarılar elde etti; ancak, süreçte belirli miktarda manuel talimat gerektiren sınırlamaları vardır. ML’nin görüntü tanıma oranı ticarileşmeyi gerçekleştirmek için yeterlidir, ancak bazı alanlarda hala çok düşüktür, bu nedenle görüntü tanıma becerileri hala insan yetenekleri kadar iyi değildir[ 29 ].
DL [ örneğin , yapay sinir ağı, derin sinir ağı (DNN), evrişimli sinir ağı (CNN) ve yinelenen sinir ağı] bilgisayarın belirli görevleri yerine getirirken gerekli verileri hızlı bir şekilde topladığı, analiz ettiği ve işlediği bir süreçtir. ML’ye ulaşmanın bir tekniği olan resmi verileri kabul etmek zorunda olmak. DL özerk öğrenme özelliklerine sahiptir; Eğitim veri seti sağlandıktan sonra program, geri yayılım algoritmasını kullanarak ve her bir sinir ağı katmanının dahili parametrelerini insan talimatları olmadan değiştirerek temel özellikleri ve miktarları çıkarabilir[ 30 ].
Geleneksel el yapımı algoritmayla karşılaştırıldığında, yakın zamanda geliştirilen DL algoritması, görüntülerin ayırt edici özelliklerini otomatik olarak çıkarıp öğrenebiliyor ve ardından bu görüntüleri sınıflandırabiliyor[ 31 ]. DL, lezyonları otomatik olarak tespit etme, lezyonları sınıflandırma, hızlı ayırıcı tanı yapma ve yakın gelecekte gerçekleştirilecek ön tıbbi raporları yazma potansiyeline sahiptir.
CNN, insan beyninin görsel korteksinin görüntüleri işlemesi ve tanıması ilkesine dayanan bir DNN’dir; bu, şu anda görüntüler için DL için en popüler ağ mimarisidir[ 29 ]. CNN, bir görüntüden temel özellikleri çıkarmak ve çıktı olarak tamamen bağlı katmanlar aracılığıyla son bir sınıflandırma sağlamak için çoklu ağ katmanlarını (ardışık evrişim katmanları ve ardından havuzlama katmanları) kullanır[ 30 ]. Diğer DL yapılarıyla karşılaştırıldığında CNN, hem video hem de ses uygulamalarında mükemmel performansı nedeniyle görüntü tanıma için yaygın bir yöntemdir. Örneğin CNN, ImageNet[ 32 ] gibi büyük görüntü depolarında görüntü sınıflandırmada en iyi performansı gösterir . Ek olarak, CNN’nin eğitimi diğer DL tekniklerine göre daha kolaydır ve daha az parametre kullanma avantajına sahiptir.
Son yıllarda yapay zeka, gastroenteroloji alanında, özellikle görüntü tanıma ve sınıflandırma olmak üzere sindirim sistemindeki uygulamalarla oldukça gelişti. van der Sommen ve arkadaşları [ 33 ], Barrett özofagusu olan 44 hastadan alınan 100 görüntüye dayanarak Barrett özofagusundaki erken neoplazinin saptanması için otomatik bir bilgisayar algoritması bildirmişlerdir.
Görüntü başına düzeyde, algoritmanın duyarlılığı ve özgüllüğü sırasıyla 0,83 ve hasta düzeyinde 0,86 ve 0,87 idi. Everson ve arkadaşları [ 34 ], yemek borusunun erken skuamöz hücreli kanserinin gerçek zamanlı tahmini için intrapapiller kılcal halkaları sınıflandırmak üzere bir CNN’yi eğitmiş ve %93,7’lik bir duyarlılık ve %91,7’lik bir doğrulukla güçlü bir teşhis performansı sergilemiştir; bu, bir uzmanla karşılaştırılabilecek düzeydedir.
Endoskopistlerden oluşan bir panel. Xu ve arkadaşları [ 35 ] mide kanser öncesi durumlarını (mide atrofisi ve bağırsak metaplazisi dahil) görüntü destekli endoskopi (IEE) ile tespit etmek için derin bir CNN sistemi kurdular. Dahili test setinde, çok merkezli harici test setinde ve prospektif video test setinde gastrik atrofi için tanısal doğruluk sırasıyla 0,901, 0,864 ve 0,878 ve bağırsak metaplazisinin tanısal doğruluğu 0,908, 0,859 ve 0,898 idi.
Erken mide kanserini ayırt etmede endoskopistlere yardımcı olmak için Kanesaka ve arkadaşları [ 36 ], büyütülmüş dar bant görüntülemenin (NBI) kullanımını kolaylaştırmak için SVM teknolojisini kullanan bir bilgisayar destekli teşhis (CAD) sistemi üzerinde çalıştılar; bu sistem, %96,3’lük bir doğruluk, duyarlılık ortaya çıkardı. %96,7 ve özgüllük %95. Kapsül endoskopik görüntü görüntüleme ve teşhis son derece zaman alıcı bir süreç olduğundan, Park ve arkadaşları [ 37 ] farklı lezyon türlerini tanımlamak ve bunun klinik önemini değerlendirmek için Inception-Resnet-V2 modelini temel alan yapay zeka destekli bir okuma modeli geliştirdiler.
Sonuçlar, modelin yalnızca operatörün lezyon tespit oranlarını iyileştirmesine yardımcı olmakla kalmayıp aynı zamanda okuma süresini de azalttığını gösterdi. Urban ve arkadaşları [ 38 ], kolorektal poliplerin yerini belirlemek ve tanımlamak için 2000 hastadan alınan 8641 görüntüyü içeren derin bir CNN modeli oluşturdular; bu model, 0,991’lik alıcı çalışma karakteristik eğrisinin altında bir alan ve %96,4’lük bir doğruluk ortaya çıkardı. Ayrıca çeşitli çalışmalar, H. pylori enfeksiyonunun tanısında AI destekli endoskopinin uygulanabilirliğini ve olasılığını kanıtlamıştır .
H. PYLORİ ENFEKSİYONUNUN AI DESTEKLİ ENDOSKOPİK TANISI
2004 gibi erken bir tarihte, Huang ve arkadaşları [ 39 ] bağımsız olarak, H. pylori ile ilişkili gastrik histolojik özellikleri öngörmek için planlanan sinir ağı (RFSNN) tekniği ile rafine edilmiş özellik seçimine dayalı bir CAD modeli geliştirdiler . Bu çalışmaya toplam 104 dispeptik hasta dahil edildi ve tüm denekler endoskopi ve mide biyopsisi ile prospektif olarak değerlendirildi. Yazarlar, RFSNN modelini eğitmek için 30 hastanın (15’i H. pylori enfeksiyonu olan ve 15’i olmayan) endoskopik görüntülerini ve histolojik özelliklerini kullanmış ve ardından H. pylori enfeksiyonunun tahmin edici bir modelini oluşturmak için geri kalan 74 hastanın görüntü parametrelerini kullanmıştır . Aynı zamanda, mide antrumunun histolojik özelliklerini endoskopik görüntülerden tahmin etmek için altı endoskopik doktor (üç acemi ve üç uzman) davet edildi. Sonuçlar, RFSNN modeli analiz için aynı hastanın antrum, vücut ve kardiya görüntülerini içerdiğinde, H. pylori enfeksiyonunu tespit etme duyarlılığı ve özgüllüğünün sırasıyla %85,4 ve %90,9 olduğunu gösterdi. Birlikte, altı endoskopistin H. pylori enfeksiyonunu tahmin etmedeki doğruluğu sırasıyla %67,5, %64,8, %72,9, %74,3, %79,7 ve %81,1 idi (ilk üçü acemi ve ikinci üçü vasıflı yaşlılardı). Açıkçası, RFSNN modelinin H. pylori enfeksiyonunu antrum görüntüleri ile tahmin etmedeki doğruluğu endoskopistlerinkinden %85,1 daha yüksekti. Tahmin sisteminin, atrofi ve bağırsak metaplazisinin tanısında endoskopistlerinkinden de üstün olan yüksek bir duyarlılığı ve özgüllüğü olması dikkat çekicidir. Bu RFSNN sistemi, endoskopi sırasında mide hakkında gerçek zamanlı ve kapsamlı bilgi sağlar ve lokalize biyopsinin eksikliklerinin üstesinden gelme potansiyeline sahiptir. Çeşitli nedenlerden ötürü, çalışma boyunca H. pylori enfeksiyonunun tanısına daha yardımcı olan IEE yerine beyaz ışıklı endoskopi kullanıldı . H. pylori enfeksiyonunun teşhisinde yapay zekaya ilişkin erken bir çalışma olan bu makale, sonraki çalışmalar için referans verileri ve yenilikçi fikirler sunmaktadır.
2008 yılında Huang ve arkadaşları [ 40 ] H. pylori enfeksiyonunun tanısında yapay zeka destekli endoskopi alanında daha ileri bir çalışma yürüttüler . Beyaz ışıklı endoskopik görüntülerin özelliklerini kullanarak H. pylori’nin gastrik histolojisini teşhis etmek için SVM ve sıralı ileri kayan seçimi (SFFS) birleştiren bir CAD sistemi tasarladılar . Bu çalışma, histoloji ile çok sayıda aday görüntü özelliği arasındaki ilişkiyi tanımlamak için en uygun özelliği seçmek için SFFS’yi kullanmayı ve ardından sınıflandırma için SVM’yi kullanmayı amaçladı. Bu çalışmaya toplam 236 dispepsi hastası dahil edildi; bunların 130’u, histolojik inceleme altın standart olarak kullanılarak H. pylori ile enfekte hastalar olarak tanımlandı. Sonuçlar , antrum, vücut ve kardiya görüntülerini analiz etmek için SFFS sistemli SVM kullanıldığında H. pylori enfeksiyonunun teşhisinin doğruluğunun sırasıyla %87,8, %87,6 ve %86,7 olduğunu gösterdi . SFFS’siz SVM ile karşılaştırıldığında, SFFS sistemli SVM çoğu durumda daha yüksek tanısal doğruluğa sahipti. Bu, görüntü özelliklerinin sınıflandırılmasından önce tarama için SFFS’nin kullanılmasının büyük önem taşıdığını göstermektedir; bu, yalnızca düşük korelasyona sahip özellikleri hariç tutarak tanısal doğruluğu arttırmakla kalmaz, aynı zamanda sistemin eğitim ve test süresini de azaltır. Ayrıca sınıflandırma sonuçları üzerinde 1000 tekrarlı test gerçekleştirilmiş ve bu da deneyin güvenilirliğini kanıtlamıştır. Ek olarak yazarlar, yeni teşhis sistemini, H. pylori enfeksiyonunu tespit etmek için özellik seçimine sahip bir sinir ağı kullanan önceki sistem[ 39 ] ile karşılaştırdı ve yeni sistemin daha yüksek bir sınıflandırma oranına sahip olduğu gösterildi. Her iki çalışmanın da H. pylori enfeksiyon durumunu yalnızca enfekte ve enfekte olmayan olarak sınıflandırması ve yazarların enfeksiyonun ortadan kaybolduğu veya ilaçlarla ortadan kaldırıldığı vakaları dikkate almaması üzücüdür.
2017 yılında Shichijo ve arkadaşları [ 41 ] iki derin CNN sistemi geliştirdi; biri H. pylori için pozitif veya negatif 32208 sınıflandırılmamış görüntüye (geliştirme veri seti olarak) ve diğeri sekiz anatomik lokasyona (kardia) göre sınıflandırılmış görüntülere dayalı , üst gövde, orta gövde, küçük eğrilik, açı, alt gövde, antrum ve pilor). Daha sonra test veri seti 397 hastadan (72 H. pylori pozitif ve 325 negatif) alınan toplam 11481 görüntüyü içeriyordu . Bu testlerin herhangi birinde pozitif sonuç veren hastalar (kan veya idrar anti- H. pylori immünoglobulin (Ig) G seviyeleri, dışkı antijen testi veya üreaz nefes testi dahil) H. pylori pozitif olarak sınıflandırıldı . İki CNN’nin teşhis performansını karşılaştırmak için, test veri setlerini birlikte değerlendirmek üzere 23 endoskopist davet edildi. Endoskopistler tecrübelerine göre “Sertifikalı grup”, “görece deneyimli grup” ve “başlangıç grubu” olmak üzere üç gruba ayrıldı. Test sonuçları, sınıflandırılmamış görüntülerle oluşturulan ilk CNN için alıcı çalışma eğrisi (ROC) eğrisinin (AUC) altındaki alanın 0,43 kesme değerinde 0,89 olduğunu gösterdi. İlk CNN’nin duyarlılığı, özgüllüğü, doğruluğu ve tanı süresi sırasıyla %81,9, %83,4, %83,1 ve 3,3 dakika idi. İkincil CNN için bu değerler sırasıyla %88,9, %87,4, %87,7 ve 3,2 dakika idi ve AUC, 0,34 kesme değerinde 0,93 idi. Ayrıca genel endoskopistler için bu değerler sırasıyla %79,0, %83,2, %82,4 ve 230,1 dk idi. İstatistiksel analiz sonrasında, H. pylori enfeksiyonunun tanısında ilk CNN ile 23 endoskopist arasında duyarlılık, özgüllük veya doğruluk açısından herhangi bir fark yoktu . Ancak midenin lokasyonuna göre kategorize edilmiş görüntülerle oluşturulan ikincil CNN’nin doğruluğunun endoskopistlere göre anlamlı düzeyde daha yüksek olduğu görüldü (%5,3; %95 GA: 0,3-10,2). Ayrıca kurul onaylı grubun, başlangıç grubuna göre önemli ölçüde daha yüksek özgüllüğe (%89,3’e karşı %76,3, P < 0,001) ve doğruluğa (% 88,6’ya karşı % 75,6, P < 0,001) sahip olduğu bulundu. Benzer şekilde nispeten deneyimli grup ile başlangıç grubu arasında da anlamlı bir fark gözlendi. Kısacası, ikinci CNN’nin teşhis yeteneği neredeyse yetenekli bir endoskopistinki kadar iyidir. Teşhis süresi açısından CNN endoskopistleri bile tamamen geride bıraktı. Ancak bu çalışmada CNN algoritmasını oluşturmak için hareketsiz görüntüler benimsenmiştir ve dinamik görüntülere dayalı olarak gerçek zamanlı teşhisin gerçekleştirilip gerçekleştirilemeyeceği henüz araştırılmamıştır.
Bu çalışmanın bir zayıflığı H. pylori’nin ortadan kaldırılmasından sonraki durumu içermemesiydi . Bu konuyu ele almak için yazarlar kısa süre sonra H. pylori enfeksiyon durumunun değerlendirilmesinde AI’nın rolünü daha ayrıntılı olarak ele alan yeni bir çalışma yürüttüler . Shichijo ve arkadaşları [ 42 ] tarafından 2019 yılında oluşturulan derin bir CNN, 5236 hastadan (742 H. pylori -pozitif, 3649 H. pylori -negatif ve 845) alınan 98564 endoskopik görüntüden oluşan bir veri seti üzerinde önceden eğitilmiş ve ince ayar yapılmıştır. H. pylori ortadan kaldırıldı). Önceki çalışmada olduğu gibi, bu AI tabanlı teşhis sistemi, midenin sekiz bölgesini (kardiya, üst gövde, orta gövde, küçük eğrilik, açı, alt gövde, antrum ve pilor) takip eden sınıflandırılmış görüntüler kullanılarak geliştirildi. Oluşturulan CNN’nin tanısal doğruluğunu değerlendirmek için 847 hastadan (70 H. pylori pozitif, 493 H. pylori -negatif ve 284 H. pylori – ortadan kaldırılmış) toplam 23699 görüntüyü içeren bağımsız bir test veri seti hazırlandı. İstatistiksel analize göre, doğru tanı oranları negatif tanı için %80 (465/582), ortadan kaldırılmış tanı için %84 (147/174) ve pozitif tanı için %48 (44/91) idi. Bu teşhis sisteminin performansı, bir çalışmada bu durumları vakaların sırasıyla %88,9, %55,8 ve %62,1’inde teşhis eden yetenekli endoskopistlerin performansı ile karşılaştırılabilir düzeydedir[ 43 ]. Daha sonra yazarlar, H. pylori pozitifini ortadan kaldırılmış olandan ( H. pylori negatif hastalar hariç) ayırt etme konusunda CNN’in tanısal yeteneğini değerlendirdiler . CNN, pozitif olan 70 hastadan 46’sında (%66) doğru pozitif teşhis koyarken, elenen 284 hastadan 243’ünde (%86) CNN doğru şekilde eradike teşhis koydu. Bununla birlikte, bu çalışma H. pylori’nin ortadan kaldırılmasından sonraki süreyi hesaba katmamıştır ancak atrofik gastritin histolojik özellikleri, ortadan kaldırılmasından birkaç yıl sonra kaybolabilir[ 44 ]. O halde muhtemelen tanıda endoskopik özellikler de değişir.
2019 yılında Zheng ve arkadaşları [ 45 ], bir CNN modeliyle (50 Katmandan oluşan son teknoloji ürünü bir CNN olan ResNet-50) birleştirilmiş yeni bir bilgisayar destekli karar destek sistemi tasarladılar. Bu sistemin , midenin beyaz ışık görüntülerine (WLI) dayanarak H. pylori enfeksiyonunu retrospektif olarak değerlendirmek için kullanılması bekleniyordu . Algoritmayı eğitmek için türetme kohortu olarak H. pylori enfeksiyonu olan 847 kişi dahil olmak üzere toplam 1507 hasta (11729 mide görüntüsü) kullanıldı. Yazarlar üç DL modeli oluşturdular: (1) Tüm mide görüntüleri için tek mide görüntüsü; (2) Farklı mide konumlarına (fundus, korpus, angularis ve antrum) göre tek mide görüntüsü; ve (3) Aynı hasta için birden fazla mide görüntüsü. Daha sonra, doğrulama grubu olarak H. pylori enfeksiyonu olan 310 kişi dahil olmak üzere 452 hasta (3755 görüntü), H. pylori enfeksiyonunun değerlendirilmesinde CNN’nin tanısal doğruluğunu değerlendirmek için kullanıldı . Değerlendirme sonuçları, tek bir mide görüntüsü için AUC, duyarlılık, özgüllük ve doğruluğun sırasıyla 0,93, %81,4, %90,1 ve %84,5 olduğunu gösterdi. Tek bir mide görüntüsünü farklı anatomik konumlara göre değerlendirirken, AUC’ler yüksekten düşüğe 0,94 (korpus), 0,91 (angularis), 0,90 (antrum) ve 0,82 (fundus) idi. İstatistiksel analize göre, tek korpus görüntüsü kullanan CNN modeli, antrum veya fundus ile karşılaştırıldığında en yüksek AUC’ye ( P < 0.01) sahipti. Daha da önemlisi, CNN modeline hasta başına birden fazla mide görüntüsü uygulandığında AUC, duyarlılık, özgüllük ve doğruluk sırasıyla %0,97, %91,6, %98,6 ve %93,8 kadar yüksekti. Sonuç olarak, çoklu mide görüntüleri kullanan CNN modeli, tek mide görüntüsüne ( P < 0,001) veya vücut mide görüntüsüne ( P < 0,001) kıyasla daha yüksek bir AUC’ye sahipti . Bu çalışmaya dahil edilecek endoskopik görüntüleri seçerken, düşük kaliteli görüntüler ( yani , bulanık görüntüler, aşırı mukus, yiyecek artığı, kanama ve/veya yetersiz hava insüflasyonu) hariç tutulmuştur; ancak bunlar, gerçek operasyon sırasında önlenememiştir. endoskopi. Bu nedenle CNN’in düşük kaliteli görüntüleri tanıma yeteneğinden daha fazla yararlanılması gerekiyor.
2020 yılında Yoshii ve arkadaşları [ 19 ], H. pylori enfeksiyon durumunu (enfeksiyon dışı, geçmiş enfeksiyon ve mevcut enfeksiyon) prospektif olarak değerlendirmek için ML prosedürünü temel alan bir tahmin modeli oluşturdular ve bunu yedi deneyimli endoskopistin genel değerlendirmesiyle karşılaştırdılar. Gastritin Kyoto sınıflandırmasını kullanarak. Çalışmaya toplam 498 kişi katılmıştır (315’i enfeksiyonsuz, 104’ü geçmiş enfeksiyon ve 79’u mevcut enfeksiyon) ve H. pylori enfeksiyonu durumunu belirlemek için altın standart, yok etme tedavisi geçmişi ve H. pylori IgG antikorunun varlığıydı. . Sonuçlar, yedi endoskopistin genel tanısal doğruluk oranının %82,9 olduğunu gösterdi. H. pylori yok etme geçmişi olmayan tahmin modelinin tanısal doğruluğu %88,6, yok etme geçmişi olanlarda ise %93,4 idi. Açıkçası, yok etme geçmişi olan modelde sonuçlar iyileşti. Tahmini model ile yetenekli endoskopistler arasında tanısal doğruluk açısından anlamlı bir fark yoktu. Bu çalışmanın sınırlamalarından biri, H. pylori enfeksiyonunun mevcut durumunu değerlendirmek için yalnızca bir test yönteminin kullanılmış olmasıdır . Ayrıca üre nefes testi veya dışkı antijen testi, özellikle H. pylori antikor titresi 3-10 U/mL olan hastalarda H. pylori enfeksiyonunun mevcut durumunu H. pylori IgG antikor düzeylerinden daha üstün bir şekilde değerlendirecektir.
Yukarıdaki çalışmaların tümü, yapay zeka teknolojisine dayalı CAD sistemlerini oluşturmak için WLI’yı kullandı.noloji. Ayrıca bazı raporlar, H. pylori enfeksiyonunun tanısında mavi lazer görüntüleme (BLI), bağlantılı renkli görüntüleme (LCI) ve NBI[46-48] gibi görüntü destekli endoskopilerin ( IEE’ler ) potansiyelini göstermiştir . 2018 yılında Nakashima ve arkadaşları [ 49 ], H. pylori enfeksiyonunun ileriye dönük tanısı için derin CNN algoritmasına dayalı bir AI teşhis sistemi oluşturdu . Toplam 222 denek (105 H. pylori pozitif) çalışmaya alındı ve özofagogastroduodenoskopi ve H. pylori IgG antikorları için bir serum testi uygulandı. Serum H. pylori IgG antikor titresi ≥ 10 U/mL, H. pylori enfeksiyonu için pozitif kabul edilirken , < 3,0 U/mL titresi negatif olarak kabul edildi. Ayrıca serum H. pylori IgG antikor titreleri 3,0 ile 9,9 U/mL arasında olan kişiler hariç tutuldu. Bu çalışmada, 75’i H. pylori enfeksiyonu olan 162 denek (1944 görüntü) AI eğitimi için bir eğitim grubu olarak kaydedildi. Geriye kalan 60 denek için (30 H. pylori -pozitif ve 30 H. pylori -negatif), gastrik cismin küçük eğriliğinin bir WLI, bir BLI-parlak ve bir LCI görüntüsü bir test grubu olarak toplanarak test grubu olarak değerlendirildi. Yapay zekanın teşhis performansı. İstatistiksel analize göre WLI için AUC, duyarlılık ve özgüllük sırasıyla %0,66, %66,7 ve %60,0 idi. Bu göstergeler BLI-parlak için sırasıyla %0,96, %96,7 ve %86,7 ve LCI için sırasıyla %0,95, %96,7 ve %83,3 idi. BLI-parlak ve LCI için elde edilen AUC’ler WLI’den belirgin şekilde daha büyüktü ( P < 0.01). Açıkçası, bu yeni AI teşhis sistemi WLI yerine lazer IEE’lere verimli bir şekilde uyarlandı; dolayısıyla, IEE’leri kullanarak H. pylori enfeksiyonunu teşhis etme konusunda mükemmel bir yetenek sergiledi . H. pylori yok etme tedavisi geçmişi olan hastaların bu çalışmaya dahil edilmemiş olması üzücüdür çünkü bu AI sistemi yalnızca temel bir araçtır ve midenin karmaşık özelliklerini tam olarak değerlendiremez.
2020 yılında Yasuda ve arkadaşları [ 21 ], LCI görüntülerini kullanarak H. pylori enfeksiyonu için SVM algoritmasını temel alan bir otomatik teşhis sistemi oluşturdular .
Yazarlar, H. pylori enfeksiyonunu geriye dönük olarak teşhis etmek için bu sistemi kullanmayı beklediler ve doğruluğunu endoskopistlerinkiyle karşılaştırdılar. Bu çalışmada eğitim verisi olarak 32 hastanın endoskopik görüntüleri (toplam 128 görüntü) dahil edilmiş ve her hastadan küçük (açı-alt gövde ve orta-üst gövde) ve büyük (açı-alt gövde) olmak üzere dört görüntü toplanmıştır. ve orta-üst gövde) eğrilik. H. pylori enfeksiyonunun tanısı ikiden fazla farklı teste dayanıyordu:
Histolojik inceleme, serum antikor testi, dışkı antijen testi ve/veya 13C-üre nefes testi. Olguların H. pylori enfeksiyonuna ilişkin 14 vakanın H. pylori pozitif, 18 vakanın ise negatif olduğu görüldü. Yazarlar, daha küçük (açı-alt gövde ve orta-üst gövde) ve daha büyük (açı-alt gövde ve orta-üst gövde) olan 105 hastadan (42 H. pylori enfekte, 46’sı eradikasyon sonrası ve 17 enfekte olmayan) alınan 525 LCI görüntüsünü kullanmıştır. sistemin teşhis yeteneklerini değerlendirmek için üst gövde) eğriliği ve forniks. H. pylori’nin daha sonra ortadan kaldırıldığı denekler için, H. pylori’nin endoskopi yapıldıktan sonra başarılı bir şekilde ortadan kaldırılmasının üzerinden 1 yıldan fazla (ortalama 5,6 yıl) geçmiş olduğunu belirtmekte fayda var . Aynı zamanda, farklı deneyimlere sahip üç doktor da (A, LCI’nin geliştirilmesinde yer alan bir uzman; B, bir gastroenteroloji uzmanı ve C, bir kıdemli asistan) aynı LCI görüntülerini değerlendirdi.
Sonuçlar, H. pylori enfeksiyonunun teşhisinde AI sistemi A, B ve C’nin doğruluğunun sırasıyla %87,6, %90,5, %89,5 ve %86,7 olduğunu gösterdi. AI sisteminin doğruluğu deneyimsiz doktora (doktor C) göre daha yüksekti ancak doktorların tanısı ile AI sistemi arasında anlamlı bir fark yoktu ( P > 0.05). H. pylori enfeksiyonunun durumuna göre ayrılan hastaların alt analizine göre , AI sisteminin, A, B ve C doktorlarının H. pylori enfeksiyonunun ortadan kaldırılması sonrası tanısındaki doğruluğu %82,6, %87,0 olarak belirlendi. sırasıyla %89,1 ve %76,1. Mide bölgesinin her bir görüntüsü için AI tanısının alt analizine göre, orta-üst gövdenin küçük eğriliğinin doğruluğu (%88,6), forniksinkinden (%69,5) ve orta-üst gövdenin daha büyük eğriliğinin doğruluğundan önemli ölçüde daha yüksekti. -üst gövde (%73,3). Ancak bu çalışmaya dahil edilen örneklem sayısının az olması nedeniyle büyük örnekleme hatası riski söz konusu olabilir.
SINIRLAMALAR VE GELECEK YÖNÜ
Yukarıdaki çalışmalar, H. pylori enfeksiyonunun endoskopik tanısında AI uygulamasının büyük ölçüde pratik, uygulanabilir ve umut verici olduğunu göstermektedir. Bu çalışmalara ilişkin detaylı bilgiler Tablo 1’de gösterilmektedir .
Endoskopistlerin manuel tanımlama ve teşhisiyle karşılaştırıldığında, AI teknolojisine dayalı CAD sisteminin yeri doldurulamaz birçok avantajı vardır: (1) Yüksek doğruluk: Mevcut çalışmalara göre AI, H. pylori enfeksiyonunun tanısında acemi endoskopistlerden daha iyidir . duyarlılık, özgüllük ve doğruluk açısından oldukça yeteneklidir ve neredeyse yetenekli endoskopistlerle karşılaştırılabilir düzeydedir; (2) Yüksek verimlilik: Günümüzün son derece gelişmiş bilgisayarları sayesinde yapay zeka, binlerce endoskopik görüntüyü dakikalar içinde sınıflandırabilir ve bu, endoskopistlerin büyük miktarda zaman ve enerji almasına neden olabilir. Aynı zamanda, etkili görüntü tanıma, H. pylori enfeksiyonunun endoskopi altında gerçek zamanlı tanısı için bir temel oluşturur; (3) Yüksek kalite kontrolü: Bazı çalışmalar, endoskopistlerin çalışma saatlerinin uzatılmasıyla birlikte adenom tespit oranının giderek azaldığını bulmuştur. Bu aynı zamanda endoskopist yorgunluğunun tarama kolonoskopisinin etkinliğinde azalmaya yol açabileceğini düşündürmektedir[ 50,51 ].
Ancak AI teknolojisine dayalı CAD sistemi dış etkenlerden etkilenmez ve mükemmel kalite kontrolü sağlar; (4) Yüksek objektiflik: Hepimizin bildiği gibi, endoskopistlerin H. pylori enfeksiyonuna endoskopi altında mide mukozasının özelliklerini gözlemleyerek karar vermesi tamamen subjektiftir . Karar verme yetkisi hala endoskopistlerin elinde olmasına rağmen, yapay zeka destekli endoskopi referans olarak objektif bir ikinci görüş sağlamaya yardımcı olabilir[ 52 ]; ve (5) Yüksek etkili öğretim: Yapay zeka, yetenekli endoskopistlerin öğretme işini üstlenme yeteneğine sahiptir ve acemilere daha erişilebilir, kullanışlı ve objektif rehberlik sağlar.
Kaynak:
Lu YF, Lyu B. Helicobacter pylori enfeksiyonunun endoskopik tanısında mevcut durum ve yapay zeka uygulamasının olasılığı . Artif Intel Gastrointest Endosc 2021; 2(3): 50-62 [DOI: 10.37126/aige.v2.i3.50 ]
Alıntı: Lu YF, Lyu B. Helicobacter pylori enfeksiyonunun endoskopik tanısında mevcut durum ve yapay zeka uygulamasının olasılığı . Artif Intel Gastrointest Endosc 2021; 2(3): 50-62
URL: https://www.wjgnet.com/2689-7164/full/v2/i3/50.htm
DOI: https://dx.doi.org/10.37126/aige.v2.i3.50
Lu YF, Lyu B. Helicobacter pylori enfeksiyonunun endoskopik tanısında mevcut durum ve yapay zeka uygulamasının olasılığı . Artif Intel Gastrointest Endosc 2021; 2(3): 50-62 [DOI: 10.37126/aige.v2.i3.50 ]
Üre nefes kiti mideyi enfekte edebilen ve hem mide hem de duodenumdaki (ince bağırsağın ilk kısmı) ülserlerin ana nedeni olan bir bakteri türü olan Helicobacter pylori’yi (H. pylori) tespit etmek için kullanılır.
Üre nefes kiti (UBT) bir teşhis aracıdır. Doktorlar bunu bir kişide H. pylori enfeksiyonu olup olmadığını görmek için kullanır. Enfeksiyonu tespit etmek veya tedavinin ne kadar iyi çalıştığını kontrol etmek için test önerebilirler.
H. pylori nefes kiti basit ve güvenli bir testtir. Test şu amaçlarla kullanılır:
H. pylori (Helicobacter pylori), midenizi veya duodenumunuzu (ince bağırsağın ilk kısmı) enfekte eden bir bakteridir. H. pylori bakterileri aşağıdaki durumlara yakalanma riskinizi artırabilir:
Gastrit (mide zarının iltihaplanması veya tahrişi). Peptik ülser hastalığı (duodenum veya mide/mide ülseri). Mide (mide) kanseri . H. pylori peptik ülserin önemli bir nedenidir. Bakteri midenin koruyucu mukusunu azaltır. Bu da midenin sindirim asitlerinden zarar görmesini kolaylaştırır.
H. pylori bakterilerini tespit edin.
Aktif bir H. pylori enfeksiyonunu teşhis edin . Tedavinin enfeksiyonu iyileştirip iyileştirmediğini belirleyin. Bu teste üre nefes testi de denir.
Bu Üre nefes testi (UBT) bir teşhis aracıdır. Doktorlar bunu bir kişide H. pylori enfeksiyonu olup olmadığını görmek için kullanır. Enfeksiyonu tespit etmek veya tedavinin ne kadar iyi çalıştığını kontrol etmek için test önerebilirler.
, gastrite (mide mukozasının iltihabı) veya mide ve ince bağırsakta ülserlere neden olabilen Helicobacter pylori bakterisinin varlığı açısından nefesinizi inceler.
C13 ve C14 H Pilori Testi Arasındaki Fark Nedir?
Helicobacter pylori (H. pylori), mide zarını enfekte eden ve gastrit, peptik ülser ve hatta mide kanseri dahil olmak üzere çeşitli gastrointestinal hastalıklara neden olabilen bir bakteridir. H. pylori enfeksiyonunu teşhis etmek için doktorlar kan testleri, dışkı testleri ve nefes testleri gibi farklı yöntemler kullanır. Nefes testleri arasında en yaygın olanı C13 ve C14 H. pylori testleridir. Bu yazıda bu iki test arasındaki farkları, avantajlarını ve dezavantajlarını inceleyeceğiz.
C13 H. pylori testi, hastanın nefesindeki karbondioksit (CO2) miktarını ölçen, invaziv olmayan bir tanı testidir. Test, hastanın, H. pylori bakterilerinin CO2 ve amonyağa parçalayabildiği kimyasal bir bileşik olan C13 etiketli üre içeren bir solüsyonu içmesini içerir. 30 dakika sonra hasta nefesini bir toplama torbasına verir ve nefes numunesindeki CO2 seviyeleri bir kütle spektrometresi kullanılarak ölçülür.
C13 H. pylori testi %95 duyarlılık ve %98 özgüllük ile son derece doğrudur. Ayrıca uygulanması güvenli ve kolaydır ve herhangi bir özel hazırlık veya oruç gerektirmez. Ancak test nispeten pahalıdır ve her sağlık kuruluşunda bulunmayabilir.
C14 H. pylori Testi
C14 H. pylori testi, hastanın nefesindeki radyoaktif karbon-14 (C14) miktarını ölçen başka bir nefes testidir. C13 testi gibi, C14 testi de hastanın C14 etiketli üre içeren bir solüsyon içmesini içerir. Ancak test, CO2 seviyelerini ölçmek yerine bir sintilasyon sayacı kullanarak nefes numunesindeki C14 miktarını ölçer.
C14 H. pylori testi de %95 duyarlılık ve %98 özgüllük ile son derece doğrudur. C13 testinden daha ucuzdur ve çoğu sağlık kuruluşunda yaygın olarak mevcuttur. Ancak test, hastanın testten önce birkaç saat aç kalmasını gerektirir ve hastayı az miktarda radyasyona maruz bırakır.
Hangi Test Seçilmeli? Hem C13 hem de C14 H. pylori testleri, H. pylori enfeksiyonunu teşhis etmek için güvenilir ve doğru yöntemlerdir. İki test arasındaki seçim, testin kullanılabilirliği, maliyet, hastanın tıbbi geçmişi ve tercihleri gibi çeşitli faktörlere bağlıdır.
Genel olarak orucu tolere edemeyen veya radyasyona maruz kalma öyküsü olan hastalarda C13 testi tercih edilir. Daha uygun fiyatlı bir teste ihtiyaç duyan veya C13 test tesisine erişimi olmayan hastalar için C14 testi tercih edilir.
Çözüm
Özetle, C13 ve C14 H. pylori testleri, H. pylori enfeksiyonunun teşhisinde güvenilir ve doğru iki yöntemdir. Her iki testin de avantajları ve dezavantajları vardır ve iki test arasındaki seçim çeşitli faktörlere bağlıdır. H. pylori enfeksiyonunuz olduğundan şüpheleniyorsanız hangi testin sizin için en iyi olduğunu belirlemek için sağlık uzmanınıza danışın. H. pylori enfeksiyonunun erken teşhisi ve tedavisi ciddi komplikasyonları önleyebilir ve genel sağlığınızı ve refahınızı iyileştirebilir.
C13 H. pylori Testi
H. pylori enfeksiyonlarını kim alır?
H. pylori enfeksiyonları çok yaygındır. Dünya nüfusunun yaklaşık %50’si enfekte. Ancak çoğu insanda hiçbir zaman semptom görülmez.
H. pylori nefes testini ne zaman yaptırmalıyım?
Aşağıdakiler de dahil olmak üzere sindirim sisteminizde ağrı veya peptik ülser belirtileri varsa sağlık uzmanınıza başvurun: Öğünler arasında veya geceleri midenizin orta veya üst kısmında kemiren veya yanan ağrı. Bir şey yediğinizde ya da antiasit aldığınızda gelip giden ağrı.
Şişkinlik.
Göğüste ağrılı yanma hissi .
Mide bulantısı ya da kusma .
Kilo kaybı.
Test Detayları
H. pylori Üre nefes kiti sırasında ne olur?
H. pylori nefes testi sırasında balon benzeri bir torbaya nefes vermeniz istenecektir. Bu torbaya verdiğiniz karbondioksit miktarı, karşılaştırma için bir temel seviye sağlamak üzere ölçülür.
Daha sonra az miktarda limon aromalı hoş bir solüsyon içmeniz istenecektir. Çözelti üre adı verilen bir madde içerir. Solüsyonu içtikten on beş dakika sonra nefesinizi ikinci bir torbaya vereceksiniz. İkinci torbaya verdiğiniz karbondioksit miktarı da ölçülür.
H. pylori bakterisi (varsa) içtiğiniz solüsyondaki üreyi parçalayarak, verdiğiniz nefeste karbondioksit açığa çıkarır. Yani ikinci numunenizdeki karbondioksit miktarı ilk numunenizdeki miktardan yüksekse H. pylori varlığına yönelik pozitif bir testiniz var demektir.
İşlemden önce hangi adımları atmam gerekiyor?
Herhangi bir ilaca alerjiniz varsa veya fenilketonürik iseniz mutlaka sağlık uzmanınıza bildirin . Şu talimatları izleyin:
İlaçlar :
Testinizden dört hafta önce herhangi bir antibiyotik veya Pepto-Bismol® (oral bizmut subsalisilat) almayın.
Testinizden iki hafta önce, omeprazol (Prilosec®), lansoprazol (Prevacid®), pantoprazol (Protonix®), rabeprazol (AcipHex®) veya esomeprazol (Nexium®) gibi reçetesiz veya reçeteli proton pompası inhibitörlerini almayın. ), dekslansoprazol (Dexilant®).
Önce sağlık uzmanınızla konuşmadan başka bir ilaç almayı bırakmayın.
Yiyecek ve içecekler:
Testten bir saat önce hiçbir şey yemeyin ve içmeyin (su dahil). İşlemin yapılacağı gün Bir sağlık uzmanı prosedürü ayrıntılı olarak açıklayacak ve olası sorularınızı yanıtlayacaktır. İşlem yaklaşık 20 ila 30 dakika sürer.
İşlemden sonra Nefes örnekleriniz test edileceği laboratuvara gönderilir. Normal aktivitelerinize devam edebilirsiniz.
Sonuçlar ve Takip
H. pylori nefes testimin sonucunu ne zaman beklemeliyim?
Test sonuçları ne anlama geliyor?
Test sonuçları
Laboratuvar test sonuçlarınız çıkar çıkmaz sağlık uzmanınız sizinle iletişime geçecektir.
Test sonucunuz H. pylori enfeksiyonunuz olduğunu gösteriyorsa antibiyotik tedavisi göreceksiniz.
Antibiyotik tedavisinden bir ay sonra doktorunuz enfeksiyonun iyileştirildiğinden emin olmak için tekrar nefes testi isteyebilir.
Test sonucunuz negatifse ve belirtiler devam ediyorsa doktorunuz bunların nedenini belirlemek için başka testler isteyebilir.
Makrosel Tıbbi Ürünler olarak Elisa Kiti Fiyatları makul düzeyde tutmak için mümkün oldukça piyasa değeri veya daha düşük fiyat politikasını izlemekteyiz. Üretim yapılan kitlerin son kullanıcıya ulaşması ve müşteri memnuniyetini sağlamak için zaman zaman kampanyalar düzenlemektedir. Piyasada kit fiyatlarımız ortalama satış fiyatımızın çalışılan markerlara göre değişkenlik göstermektedir. Bu değişkenlik Human, Rat, Mouse, Rabbit, Fish elisa kitlerde kutu başına 250 usd ile 350 usd arasındadır.
Ayrıca müşteri memnuniyeti projelerin hızlı sonçlanması ve uluslarası yayın, makalelerde yer alması adına satın alınan elisa kitlerin çalışılması için laboratuvar anlaşmamış bulunmaktadır.
Firmamız Türkiye genelinde Üre Nefes Cihazı satışı ve satış sonrası teknik servis hizmetini vermektedir. Üre Nefes Cihazı kullanılarak Helicobacter pylori (H. pylori), mideyi ve ince bağırsağı enfekte edebilen bir bakteri türüdür. Konuyla ilgili Üre Nefes Cihazı ve Heliko bakter pylori hakkında çok detaylı açıklamara değinmek istiyoruz. Dünyadaki en yaygın bakteriyel enfeksiyonlardan biridir ve dünya nüfusunun yarısını etkilediği tahmin edilmektedir. H. pylori genellikle tehlikeli olmasa da ülser ve gastrit gibi çeşitli sindirim sorunlarına neden olabilir. Bazı durumlarda mide kanseri riskini de artırabilir. Neyse ki enfeksiyon riskini azaltmanın ve H. pylori’den uzak durmanın yolları var. Bunlar arasında iyi hijyen uygulamak, kontamine yiyecek ve sudan kaçınmak ve bakterilere karşı aşı olmak yer alıyor.
Helicobacter Pylori’ye yakalanma riskinizi nasıl azaltabilirsiniz?
Helicobacter pylori (H. pylori), mide ve ince bağırsakta enfeksiyona neden olabilen bir bakteri türüdür. Dünya nüfusunun üçte ikisine kadarının H. pylori ile enfekte olduğu tahmin edilmektedir ve bu, mide ülserlerinin ve diğer sindirim sorunlarının önemli bir nedenidir. H. pylori’ye yakalanmaktan kaçınmak her zaman mümkün olmasa da riskinizi azaltmak için atabileceğiniz adımlar vardır.
H. pylori enfeksiyonu riskini azaltmanın ilk adımı iyi hijyen uygulamaktır. Banyoyu kullandıktan sonra, yemek hazırlamadan önce ve sonra ve hayvanlarla temas ettikten sonra ellerinizi sabun ve suyla iyice yıkayın. Tükürük ile temas etmiş olabilecek yemek takımlarını, bardakları ve diğer eşyaları paylaşmaktan kaçının.
Sağlıklı bir diyetin sürdürülmesi de önemlidir. Bol miktarda meyve ve sebze içeren dengeli bir beslenme, bağışıklık sisteminizi güçlendirmenize yardımcı olabilir ve H. pylori’nin tutunmasını zorlaştırabilir. Ayrıca H. pylori içerebileceğinden çiğ veya az pişmiş etleri yemekten kaçının.
Antibiyotik kullanıyorsanız, bunları reçete edildiği şekilde ve tedavinin tamamı boyunca aldığınızdan emin olun. Antibiyotikler bağırsaktaki faydalı bakterileri öldürerek H. pylori’nin tutunmasını kolaylaştırabilir.
Son olarak H. pylori hastası biriyle yaşıyorsanız ekstra önlem almanız önemlidir. Tükürük ile temas etmiş olabilecek yemek takımlarını, bardakları ve diğer eşyaları paylaşmaktan kaçının. Ayrıca enfekte kişiyle temas ettikten sonra ellerinizi iyice yıkayın.
Bu adımları izleyerek H. pylori’ye yakalanma riskinizi azaltabilirsiniz. Ancak H. pylori enfeksiyonunun karın ağrısı, mide bulantısı, kusma veya iştahsızlık gibi herhangi bir semptomunu yaşarsanız daha ileri değerlendirme için mutlaka doktorunuza başvurun.
Helicobacter pylori (H. pylori), mideyi ve ince bağırsağı enfekte edebilen Üre Nefes Testibir bakteri türüdür. Dünyadaki en yaygın bakteriyel enfeksiyonlardan biridir ve dünya nüfusunun yarısına yakınının H. pylori ile enfekte olduğu tahmin edilmektedir. H. pylori enfeksiyonu olan kişilerin çoğunda herhangi bir semptom görülmezken, mide ülseri ve gastrit gibi çeşitli sindirim sorunlarına neden olabilir.
H. pylori genellikle enfekte bir kişiden tükürük, kusmuk veya dışkı maddesiyle temas yoluyla yayılır. Ayrıca kontamine yiyecek veya su yoluyla da yayılabilir. Kalabalık veya sağlıksız koşullarda yaşayan kişilerin enfeksiyona yakalanma olasılığı daha yüksektir.
H. pylori enfeksiyonunun en yaygın semptomu karın ağrısı veya rahatsızlıktır. Diğer semptomlar bulantı, kusma, şişkinlik, iştah kaybı ve kilo kaybını içerebilir. Bazı durumlarda H. pylori mide veya bağırsakta kanamaya neden olabilir ve bu da kansızlığa yol açabilir.
H. pylori enfeksiyonu tedavi edilmezse mide ülseri, gastrit ve hatta mide kanseri gibi daha ciddi komplikasyonlara yol açabilir. HIV/AIDS hastaları gibi bağışıklık sistemi zayıf olan kişilerin bu komplikasyonları geliştirme riski daha yüksektir.
İyi haber şu ki H. pylori enfeksiyonu antibiyotiklerle tedavi edilebiliyor. Tedavi genellikle iki hafta boyunca alınan iki veya daha fazla antibiyotiğin kombinasyonunu içerir. Tedavi süreci bitmeden semptomlar düzelse bile, tüm ilaçları reçete edildiği gibi almak önemlidir.
H. pylori enfeksiyonu riskini azaltmak için iyi hijyen uygulamak da önemlidir. Bu, ellerinizi düzenli olarak yıkamayı, enfekte kişilerle yakın temastan kaçınmayı ve kontamine yiyecek ve sudan kaçınmayı içerir.
H. pylori enfeksiyonunun risklerini anlayarak ve riski azaltmak için gerekli adımları atarak, kendinizi ve sevdiklerinizi bu potansiyel ciddi enfeksiyondan korumaya yardımcı olabilirsiniz.
Helicobacter Pylori Nedir ve Ondan Nasıl Korunabiliriz?
Helicobacter pylori (H. pylori), mideyi ve ince bağırsağı enfekte edebilen bir bakteri türüdür. Dünyadaki en yaygın bakteriyel enfeksiyonlardan biridir ve dünya nüfusunun yarısına yakınının H. pylori ile enfekte olduğu tahmin edilmektedir.
H. pylori karın ağrısı, bulantı, kusma ve şişkinlik gibi çeşitli gastrointestinal semptomlara neden olabilir. Bazı durumlarda peptik ülser ve mide kanseri gibi daha ciddi durumlara da yol açabilir. Neyse ki kendinizi H. pylori’den korumanın birkaç yolu var. En önemlisi iyi hijyen uygulamaktır. Buna, özellikle banyoyu kullandıktan sonra ve yemek yemeden önce ellerinizi düzenli olarak yıkamak da dahildir. Ayrıca enfekte olabilecek biriyle mutfak eşyaları, bardaklar ve diğer eşyaları paylaşmaktan kaçınmak da önemlidir.
Ayrıca meyve ve sebzelerden zengin sağlıklı bir beslenme düzeninin sağlanması da önemlidir. Dengeli beslenmek bağışıklık sisteminizi güçlendirmeye yardımcı olabilir, bu da sizi H. pylori’den korumanıza yardımcı olabilir.
Son olarak doktorunuzla düzenli kontrollere gitmeniz önemlidir. Doktorunuz H. pylori testi yapabilir ve gerekirse tedavi uygulayabilir.
Bu basit adımları izleyerek kendinizi H. pylori ve diğer mide-bağırsak enfeksiyonlarından korumaya yardımcı olabilirsiniz.
Çözüm
Sonuç olarak Helicobacter Pylori , çeşitli gastrointestinal sorunlara neden olabilen tehlikeli bir bakteridir. Bundan uzak durmak için, elleri düzenli olarak yıkamak, kontamine yüzeylerle temastan kaçınmak ve mutfak eşyalarını ve yiyecekleri başkalarıyla paylaşmaktan kaçınmak gibi iyi hijyen uygulamaları önemlidir. Ayrıca olası enfeksiyonların erken yakalanmasını sağlamak için dengeli beslenmek ve düzenli kontrollerden geçmek önemlidir.
Üre nefes test çalışması hakkında videomuzu izleyebilirsiniz.
Bir ELISA okuyucu plakanın 12 kuyucuğundaki renk farklılıklarını ölçer ve niceliğini belirler . ELISA okuyucuları veya mikro plaka okuyucuları spektrofotometri yapar; Bir dalga boyunda ışık yayarlar ve protein gibi bir nesne tarafından emilen ve yansıtılan ışık miktarını ölçerler.
Elisa Cihazı okuyucu, bilim adamlarının bir çözelti içindeki antijenlerin ve antikorların reaksiyonlarını enzim aktivitesi yoluyla ölçmelerine olanak tanıyan özel bir spektrofotometredir (spektrumun bir kısmı boyunca ışığın yoğunluğunu ölçen bir aparat).
Bir ELISA birden fazla adımdan oluşur. Bu adımların çoğu, spesifik olmayan bağlanmayı önlemek amacıyla bloke etme ve yıkama adımlarıdır. Spesifik olmayan bağlanma, proteinler hedef dışı etkileşimler yoluyla birbirine veya ELISA plakasının plastik yüzeyine adsorbe olduğunda meydana gelir. Kesin ELISA adımları yöntemler arasında biraz farklılık gösterir. Ancak burada örnek olarak sandviç ELISA’ya odaklanacağız .
ELISA okucu adımları, prensibi ve nasıl çalıştığı kısaca bahsedelim
ELISA (Enzim Bağlantılı İmmünSorbent Testi) , bir hedef proteinin varlığını tespit etmek için kullanılan altın yıldızlı immünolojik testtir . Araştırma ve geliştirme sırasında tüm yeni test teknolojilerinin karşılaştırıldığı standart prosedürdür . ELISA aynı zamanda hastalığın teşhisine yönelik çoğu klinik testin temelini oluşturur çünkü son derece hassastır ve şu anda en iyi karakterize edilmiş ve standartlaştırılmış yöntemdir.
Antikorlar ELISA plakalarına nasıl yapışır?
Adsorpsiyon, kaplama için kullanılan antikor veya antijen üzerindeki amino asitlerin yan zincirleri ile plastik yüzey arasındaki hidrofobik etkileşimler sonucu pasif olarak gerçekleşir. Kaplama maddesinin konsantrasyonunun yanı sıra zamana, sıcaklığa ve kaplama tamponunun pH’ına bağlıdır.
Sandviç ELISA adımları şunlardır:
Adım 1: Yakalama proteininin immobilizasyonu
Sandviç ELISA’da yakalama proteini bir antikordur ve hedef antijendir. Bu nedenle ilk ELISA adımı, yakalama antikorunu plaka üzerinde hareketsiz hale getirmektir. Yakalama proteininin önceden immobilize edildiği birçok ELISA kiti mevcuttur.
Adım 2: Kuyu yüzeyinden adsorbe edilmemiş yakalama proteinini yıkayın
Deterjanlarla yıkama adımları, proteinler arasındaki hedef dışı hidrofobik etkileşimleri azaltır ve bağlanmamış yakalama proteinlerini plakadan çıkarır.
Adım 3: Plakadaki bağlanmamış siteleri engelleyin
Proteinler arasındaki hidrofobik etkileşimlere yük veya hidrofobiklik aracılık eder. Bu, adımların engellenmesi ve yıkanması yoluyla bunların bir dereceye kadar hafifletilebileceği anlamına gelir.
Plakanın yüzeyindeki açık bölgelere adsorbe olan proteinler plakaya eklenir. Sığır Serum Albümini (BSA), Kazein veya aprotinin gibi proteinler, bir ELISA tahlilinde bloke etmek için yaygın olarak kullanılır.
Bu proteinler plakaya adsorbe edilerek hedef proteinin daha sonra bu bölgelere erişmesini engelleyecektir. Spesifik olmayan bağlanma vakasının bu şekilde azaltılması, arka plan gürültüsünün azalmasına neden olur.
Adım 4: Adsorbe edilmemiş bloke edici proteinleri kuyucuktan yıkayın
İkinci bir yıkama adımı bağlanmamış bloke edici proteinleri ortadan kaldırır.
Adım 5: Numuneyle (serum, idrar, tükürük veya katkılı araştırma solüsyonu) inkübe edin
Bu adımda antikor ve antijen arasındaki spesifik tanıma gerçekleşir . Sandviç ELISA’da antikorlar plakaya adsorbe edilir ve numune sıvısındaki hedef antijene bağlanır. Bu, bağlanma kinetiğinin dengeye ulaşmasını sağlayacak bir inkübasyon adımı gerektirir.
Adım 6: Kuluçka sıvısını yıkayın
Bu, bağlanmamış herhangi bir antijenin yıkanıp uzaklaştırıldığından emin olmak için sıklıkla birden fazla yıkama gerektiren çok önemli bir yıkama adımıdır . Bu adımdan sonra kuyucuklarda kalması gereken tek antijen, antikorları yakalamak için bağlananlardır.
Adım 7: Saptama antikoruyla inkübe edin
Bir ELISA’daki tespit antikoru, bir florofor (florimetri için) veya bir enzim (kolorimetrik tespit veya kemilüminesans için ) gibi belirli bir etikete konjuge edilir. Saptama antikoru, hedef antijen üzerindeki yakalama antikorundan farklı bir epitopu ‘tanır’. Bu nedenle sandviç ELISA analizleri, yakalama antikoru-antijen saptama antikorundan oluşan bir “sandviç” ile sonuçlanır.
Adım 8: Bağlanmamış tespit antikorunu yıkayın Adım 9: Kimyasal kolorimetrik veya kemilüminesan reaksiyonlar için substrat uygulayın veya floresan reaksiyonlar için gelen ışığı uygulayın ve sinyali ölçün
Kullanılan ELISA yöntemine bağlı olarak, rengin floresans, lüminesans miktarı veya yoğunluğu örnekten ne kadar hedef antijenin yakalandığını gösterir.
ELISA analizleri, kolorimetrik, kemilüminesan veya floresan bir ürün üretmek için enzimle konjuge edilmiş bir etiket ile bir substrat arasındaki enzimatik reaksiyona dayanır. Bu ürünler daha sonra bir spektrofotometre veya florometre aracılığıyla tespit edilir ve ölçülür, böylece numunedeki hedef proteinin konsantrasyonu hakkında bilgi sağlanır.
ELISA (Enzyme-Linked Immunosorbent Assay) kitleri, laboratuvarlarda spesifik proteinlerin, antijenlerin veya antikorların varlığını veya miktarını belirlemek için kullanılan immünolojik tespit yöntemlerinden biridir. Bu kitler, birçok araştırma, teşhis ve biyoteknoloji uygulamasında yaygın olarak kullanılmaktadır.
Kaplama (Coating): Mikroplakalar genellikle bir antijen veya antikor ile kaplanır. Bu, özellikle belirli bir maddeyi tespit etmek istediğiniz bir özelliktir.
Bağlama (Binding): Numunenizdeki hedef analit, kaplanmış antijen veya antikor ile bağlanır.
Yıkama (Washing): Fazla veya bağlanmamış maddeler temizlenir.
Algılama (Detection): Bağlanmış analit, spesifik bir enzime bağlı ikinci bir antikor tarafından algılanır.
Okuma (Reading): Genellikle renk değişikliği veya floresans gibi bir sonuç, bir okuma cihazı kullanılarak ölçülür.
ELISA kitleri, çeşitli biyokimyasal ve immünolojik analizlerde kullanılmak üzere tasarlanmıştır. Örneğin, bir ELISA testi aracılığıyla belirli bir hastalığın teşhisinde veya bir laboratuvarda protein miktarının belirlenmesinde kullanılabilir.